

# Impact of automated immunization registry-based telephonic interventions on adult vaccination rates in community pharmacies: a randomized controlled trial

Samuel F. Stolpe, PharmD<sup>1,2</sup>, Matthew K. Pickering, PharmD<sup>2</sup>, Adam Vargulick<sup>3</sup>, Niteesh K. Choudhry, MD, PhD<sup>4</sup>

- 1. Scientific Technologies Corporation
- 2. Pharmacy Quality Alliance
- 3. VoicePort
- 4. Harvard Medical School

# Disclosures – Project Sponsors





## Background – Vaccines

- > Effective vaccines important advance in modern medicine
- Vaccine-preventable illness rates higher than necessary
  - US cases 18.5M per year<sup>1</sup>
  - Economic burden \$9B, 80% attributed to missing vaccines<sup>1</sup>
- ➤ Healthy People 2020
  - Flu, pneumococcal and zoster goals: 90%, 90%, 30%<sup>2</sup>
  - Actual 2016 rates: 66%, 60%, 20%<sup>3</sup>



# Background – USPTF Interventions for Adults<sup>4</sup>

- Health department interventions
  - Immunization Information Systems
  - Postcards and mailings for individual reminders
  - Community wide education
- Provider level interventions
  - Standing orders in institutional settings
  - Educational programs at discharge
  - Client reminder and recall
  - Home visits
- Insurer level
  - Reduced out-of-pocket expenses
  - Employer-based clinics



## Background – Pharmacists

- > Pharmacists have a growing vaccination footprint
- Pharmacists provided 25% of flu in 2015-2016 season, contrasted to just 6% in 2005-2006<sup>5,6</sup>
- Accessible healthcare professional
  - Additional 20 hours of vaccination training<sup>7</sup>
  - Pharmacists can vaccinate in 50 states<sup>7</sup>
  - Pharmacy within 5 miles of 95% of Americans<sup>8</sup>
  - Open late, holidays and weekends



## Goals/Aims

Determine the impact of a novel immunization-registry based automated telephonic intervention on adult vaccination rates using prompts for pneumococcal and herpes zoster vaccination



# Methods – Study Setting

- ImmuSMART—Immunization Services Model for Adult Rate Improvement
- Reviewed by Chesapeake IRB, registered with clinicaltrials.gov
- RCT among adult patients ≥19 years of age at three pharmacy chains in NY, PA, and VT
- Examining the effect of a novel immunization registry-based automated telephonic intervention in community pharmacies
  - State registry queried to determine adult patient vaccine gaps
  - Patient offered opportunity to receive missing vaccines at next visit to pharmacy
  - Pneumococcal and herpes zoster vaccine rates compared between control and intervention patients



# Methods – Eligibility Criteria

- Among patients slated to receive an automated call
- Adult patients age ≥ 19 enrolled from March 31, 2016 until March 31, 2017
  - High-risk patients 19-59 years old
  - ≥60 years old
- Missing either a pneumococcal or herpes zoster vaccination according to IIS and/or pharmacy dispensing records
- Approved by Chesapeake IRB



## Methods – Randomization

- Patients randomized to intervention or usual care (control)
- Intervention patients received a telephonic prompt, e.g. "Our records indicate that you are eligible for a pneumonia vaccination. There are two types of pneumonia vaccines, with both recommended for people above the age of 65 or with certain medical conditions. Pneumonia is a serious illness that can lead to other medical complications. Would you like a pharmacist to call you back to schedule your pneumonia vaccine?"
- The message came as part of an outbound communication that varied by pharmacy chain:
  - Medication synchronization preappointment call at Kinney Drugs' 100 stores
  - Refill ready call at Tops Markets' 58 stores
  - Refill reminder call at Price Chopper's 88 stores



## Methods – Outcomes and Data-sources

- Primary outcomes (pharmacy dispensing data)
  - Adult patient vaccination rate (receipt of ≥1 vaccine)
  - Individual rates
    - Pneumococcal rates
    - Herpes zoster rates
- Secondary outcomes (call data)
  - Age and sex based rates
  - Rate that patients complete calls (listen to entire message)
  - Rate that patients respond to prompt



## Methods – Statistical Analysis

- Intention-to-treat analysis
- Missing data: multiple imputation using chained equations
- Primary analysis using logistic regression
  - Unadjusted model
  - Adjusted model with covariates for age, sex, income (patient ZIP code average), race and education level
- Two-sided test, p<0.05 as statistically significant a priori</p>
- Software: Stata 14.0



# Methods – Additional analyses

- Subgroup analyses
  - Vaccination rate differences by sex
  - Vaccination rate differences by age
  - Vaccine-specific analyses
- Additional analyses
  - Call result analyses
  - Per-protocol analysis



## Results – Randomization



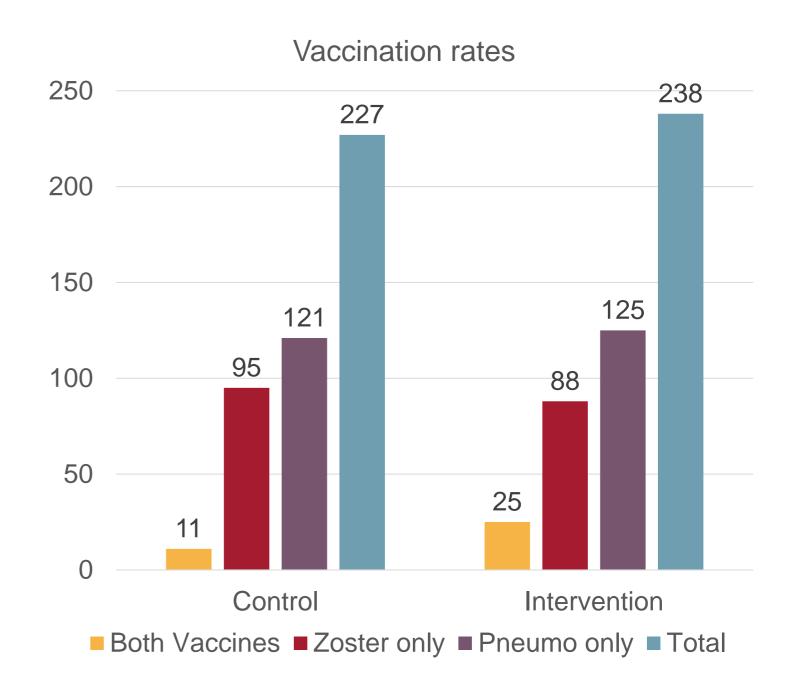


# Results – Sociodemographics at Baseline

#### RANDOMIZATION ASSIGNMENT

| CHARACTERISTICS                                | Control | Intervention |
|------------------------------------------------|---------|--------------|
| No.                                            | 11,153  | 11,148       |
| AGE, MEAN, Y                                   | 63.3    | 63.2         |
| FEMALE, %                                      | 57.6    | 56.8         |
| MEDIAN INCOME, MEAN IN ZIP CODE, \$            | 67,069  | 67,025       |
| BLACK RACE, MEAN % IN ZIP CODE, %              | 5.0     | 4.8          |
| EDUCATION, %UNDERGRAD OR HIGHER IN ZIP CODE, % | 26.8    | 26.6         |




### Results – Intervention Reach

- Large percentage of calls not listened to completely
  - 1<sup>st</sup> call result—79.6% incomplete (voice mail, hang-up, no answer)
  - 2<sup>nd</sup> call result—93.9% incomplete
  - 3<sup>rd</sup> call result—99.0% incomplete
- > Overall completion: 3,696/11,134 = 33%
- No crossovers; no loss to follow-up



# Results – Primary Outcome and Analysis

- Adult vaccination rate (adults who received ≥1 vaccine)
  - Control vaccination rate: 227/11,123 = 0.0204
  - Intervention vaccination rate: 239/11,134 = 0.0215
- Logistic regression
  - OR = 1.05 (0.88-1.27); p = 0.58
  - Identical results in crude model, and adjusting for age, sex, education, race and income





# Results – Subanalyses

VS CONTROL ODDS RATIO (95% CI)

|         | •                | •       |
|---------|------------------|---------|
| OUTCOME | Unadjusted*      | P-VALUE |
| PRIMARY | 1.05 (0.88-1.27) | 0.58    |
| AGE, Y  |                  |         |
| < 60    | 1.57 (0.80-3.07) | 0.19    |
| ≥ 60    | 1.02 (0.84-1.24) | 0.21    |
| SEX     |                  |         |
| FEMALE  | 1.12 (0.88-1.43) | 0.36    |
| MALE    | 0.96 (0.72-1.27) | 0.77    |

<sup>\*</sup>Adjusted model for age, sex, race, income and education produced identical results



## Results – Outreach Results

- Few patients accepted prompt to schedule vaccination within completed calls
  - Pneumococcal only acceptance rate: 23/3,086 (0.7%)
  - Herpes zoster only acceptance rate: 5/590 (0.8%)
  - Both offered (in same call) acceptance rate: 103/4,842 (2.1%)



# Results – Vaccination Prompt Results

- Low administration of vaccines among patients who accepted vaccination prompt to schedule vaccine appointment
  - Herpes zoster only prompt: 0/5
  - Pneumococcal only prompt: 0/23
  - Both vaccines prompt: 1/103
- First call completed predictive of vaccination, compared to no answer
  - OR (95%CI) = 1.79 (1.12-2.87); p = 0.015



# Results – Per-protocol analysis

- Per-protocol analysis of completed, voicemail, and hang-up calls vs control
  - Zoster: OR 1.62 (1.22-2.16); p = 0.001
  - Pneumococcal: OR 1.29 (1.01-1.66); p = 0.042



## Conclusions

- Overall study, prompt was not predictive of vaccination
  - Under per-protocol analysis, vaccination prompt was predictive of vaccination
  - Per protocol analysis could be biased
- Low overall number of vaccination events resulting in underpowered sample
- Low conversion of patients who accepted vaccination prompt



## Limitations

- Lower engagement rate; counterbalanced by large sample of patients
- > Patients did not complete most messages that are sent
  - Often goes to voice mail or patient does not listen to entire message before hanging up
- Indirect integration into pharmacy workflow
- Patients who accepted vaccine prompt were not vaccinated
  - New program/novel intervention
  - Limited communication between PI and pharmacists
- Possible limited workflow integration or UI challenges



## Next Steps

- Additional research is needed
- Develop ways to increase engagement; troubleshoot existing intervention and pharmacist UI utilization
- Test new intervention using additional modalities (such as text and mobile) with higher rates of connecting with patient
- Improve behavioral prompt
  - Create digital genotypes using additional consumer data sources
  - Identify barriers to vaccination (e.g. vaccine hesitancy, cost, etc.)
  - Customize behavioral messages using behavioral economic theory
  - Use rapid throughput A/B test environment with machine learning to refine cluster groups and improve behavioral messages



## References

- 1. Ozawa S, Portnoy A, Getaneh H, et al. Modeling The Economic Burden Of Adult Vaccine-Preventable Diseases In The United States. Health Affairs 2016;35:2124-32
- 2. Koh HK, Blakey CR, Roper AY. Healthy People 2020: A Report Card on the Health of the Nation. JAMA.2014;311(24):2475-2476. doi:10.1001/jama.2014.6446
- 3. Empowering Healthcare Teams to Champion Culture Change to Improve National Adult Immunization Rates. Gerontologist 2016; 56 (Suppl\_3): 107. doi: 10.1093/geront/gnw162.416
- 4. US Preventive Task Force. Guide to Community Preventive Services. Vaccinations to prevent diseases: targeted vaccinations. Community Guide to Preventive Services.
- 5. Romanelli F, Freeman T. Immunization Training: Right or Privilege?. Am J Pharm Ed: 2012: 76(4), 57
- 6. National Association of Chain Drug Stores. 2015 Chain Industry Profile.
- 7. Wick JY. Pharmacy-based Immunization Programs Make an Impact. Pharmacy Times. April 2006. Accessed at: http://www.pharmacytimes.com/publications/issue/2006/2006-04/2006-04-5476
- 8. CDC. National Early Season Flu Vaccination Coverage Nov 2015. Accessed at: https://www.cdc.gov/flu/fluvaxview/nifs-estimates-nov2015.htm#place
- 9. Kepme A, Hurly LP, Caremil CV, Allison MA, et al. Use of Immunization Information Systems in Primary Care. Am J of Prev Med. Feb 2017. 52(2): 173–182.



# Acknowledgements

- Project sponsorship: Pfizer and Merck
- Project oversight: Pharmacy Quality Alliance
- Project partners: Kinney Drugs, Tops Markets, PriceChopper, Scientific Technologies Corporation and VoicePort
- > Faculty advisor: Niteesh K. Choudhry, MD, PhD

