Impact of automated immunization registry-based telephonic interventions on adult vaccination rates in community pharmacies: a randomized controlled trial

Samuel F. Stolpe, PharmD1,2, Matthew K. Pickering, PharmD2, Adam Vargulick3, Niteesh K. Choudhry, MD, PhD4

1. Scientific Technologies Corporation
2. Pharmacy Quality Alliance
3. VoicePort
4. Harvard Medical School
Disclosures – Project Sponsors
Effective vaccines important advance in modern medicine

Vaccine-preventable illness rates higher than necessary

- US cases – 18.5M per year\(^1\)
- Economic burden $9B, 80% attributed to missing vaccines\(^1\)

Healthy People 2020

- Flu, pneumococcal and zoster goals: 90%, 90%, 30%\(^2\)
- Actual 2016 rates: 66%, 60%, 20%\(^3\)
Health department interventions
- Immunization Information Systems
- Postcards and mailings for individual reminders
- Community wide education

Provider level interventions
- Standing orders in institutional settings
- Educational programs at discharge
- Client reminder and recall
- Home visits

Insurer level
- Reduced out-of-pocket expenses
- Employer-based clinics

Background – USPTF Interventions for Adults
Pharmacists have a growing vaccination footprint

Pharmacists provided 25% of flu in 2015-2016 season, contrasted to just 6% in 2005-20065,6

Accessible healthcare professional

- Additional 20 hours of vaccination training7
- Pharmacists can vaccinate in 50 states7
- Pharmacy within 5 miles of 95% of Americans8
- Open late, holidays and weekends
Goals/Aims

- Determine the impact of a novel immunization-registry based automated telephonic intervention on adult vaccination rates using prompts for pneumococcal and herpes zoster vaccination
Methods – Study Setting

- ImmuSMART—Immunization Services Model for Adult Rate Improvement
- Reviewed by Chesapeake IRB, registered with clinicaltrials.gov
- RCT among adult patients ≥19 years of age at three pharmacy chains in NY, PA, and VT
- Examining the effect of a novel immunization registry-based automated telephonic intervention in community pharmacies
 - State registry queried to determine adult patient vaccine gaps
 - Patient offered opportunity to receive missing vaccines at next visit to pharmacy
 - Pneumococcal and herpes zoster vaccine rates compared between control and intervention patients
Methods – Eligibility Criteria

- Among patients slated to receive an automated call
- Adult patients age ≥ 19 enrolled from March 31, 2016 until March 31, 2017
 - High-risk patients 19-59 years old
 - ≥60 years old
- Missing either a pneumococcal or herpes zoster vaccination according to IIS and/or pharmacy dispensing records
- Approved by Chesapeake IRB
Patients randomized to intervention or usual care (control)

Intervention patients received a telephonic prompt, e.g. “Our records indicate that you are eligible for a pneumonia vaccination. There are two types of pneumonia vaccines, with both recommended for people above the age of 65 or with certain medical conditions. Pneumonia is a serious illness that can lead to other medical complications. Would you like a pharmacist to call you back to schedule your pneumonia vaccine?”

The message came as part of an outbound communication that varied by pharmacy chain:

• Medication synchronization preappointment call at Kinney Drugs’ 100 stores
• Refill ready call at Tops Markets’ 58 stores
• Refill reminder call at Price Chopper’s 88 stores
Primary outcomes (pharmacy dispensing data)
- Adult patient vaccination rate (receipt of ≥1 vaccine)
- Individual rates
 - Pneumococcal rates
 - Herpes zoster rates

Secondary outcomes (call data)
- Age and sex based rates
- Rate that patients complete calls (listen to entire message)
- Rate that patients respond to prompt
Methods – Statistical Analysis

- Intention-to-treat analysis
- Missing data: multiple imputation using chained equations
- Primary analysis using logistic regression
 - Unadjusted model
 - Adjusted model with covariates for age, sex, income (patient ZIP code average), race and education level
- Two-sided test, p<0.05 as statistically significant a priori
- Software: Stata 14.0
Methods – Additional analyses

- Subgroup analyses
 - Vaccination rate differences by sex
 - Vaccination rate differences by age
 - Vaccine-specific analyses

- Additional analyses
 - Call result analyses
 - Per-protocol analysis
Results – Randomization

All patients at pharmacy receiving telephonic outreach assessed

Randomized (n=22,301)

Excluded if:
• < 19 years or age
• Between 19-59 and not at high risk or ≥ 65 AND already had both pneumococcal and herpes zoster vaccine

Intervention (n=11,148)
• Received prompt (n=8,649)
• Did not receive because did not pick up, no voicemail (n=2,499)

Control (n=11,153)

Analyzed (n=11,123)
• Removed patients who were previously vaccinated (n=30)

Analyzed (n=11,134)
• Removed patients who were previously vaccinated (n=14)
Results – Sociodemographics at Baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Randomization Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>No.</td>
<td>11,153</td>
</tr>
<tr>
<td>Age, mean, Y</td>
<td>63.3</td>
</tr>
<tr>
<td>Female, %</td>
<td>57.6</td>
</tr>
<tr>
<td>Median income, mean in ZIP code, $</td>
<td>67,069</td>
</tr>
<tr>
<td>Black race, mean % in ZIP code, %</td>
<td>5.0</td>
</tr>
<tr>
<td>Education, % undergrad or higher in ZIP code, %</td>
<td>26.8</td>
</tr>
</tbody>
</table>
Results – Intervention Reach

- Large percentage of calls not listened to completely
 - 1st call result—79.6\% incomplete (voice mail, hang-up, no answer)
 - 2nd call result—93.9\% incomplete
 - 3rd call result—99.0\% incomplete
- Overall completion: 3,696/11,134 = 33\%
- No crossovers; no loss to follow-up
Results – Primary Outcome and Analysis

- Adult vaccination rate (adults who received ≥1 vaccine)
 - Control vaccination rate: \(\frac{227}{11,123} = 0.0204 \)
 - Intervention vaccination rate: \(\frac{239}{11,134} = 0.0215 \)

- Logistic regression
 - OR = 1.05 (0.88-1.27); \(p = 0.58 \)
 - Identical results in crude model, and adjusting for age, sex, education, race and income

Vaccination rates:

- Control: 11 (Both Vaccines), 95 (Zoster only), 121 (Pneumo only), 227 (Total)
- Intervention: 25 (Both Vaccines), 88 (Zoster only), 125 (Pneumo only), 238 (Total)
Results – Subanalyses

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>VS CONTROL ODDS RATIO (95% CI)</th>
<th>UNADJUSTED*</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY</td>
<td>1.05 (0.88-1.27)</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>AGE, Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 60</td>
<td>1.57 (0.80-3.07)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>≥ 60</td>
<td>1.02 (0.84-1.24)</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>SEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMALE</td>
<td>1.12 (0.88-1.43)</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>MALE</td>
<td>0.96 (0.72-1.27)</td>
<td>0.77</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted model for age, sex, race, income and education produced identical results
Results – Outreach Results

- Few patients accepted prompt to schedule vaccination within completed calls
 - Pneumococcal only acceptance rate: 23/3,086 (0.7%)
 - Herpes zoster only acceptance rate: 5/590 (0.8%)
 - Both offered (in same call) acceptance rate: 103/4,842 (2.1%)
Low administration of vaccines among patients who accepted vaccination prompt to schedule vaccine appointment

- Herpes zoster only prompt: 0/5
- Pneumococcal only prompt: 0/23
- Both vaccines prompt: 1/103

First call completed predictive of vaccination, compared to no answer

- OR (95%CI) = 1.79 (1.12-2.87); p = 0.015
Results – Per-protocol analysis

Per-protocol analysis of completed, voicemail, and hang-up calls vs control

- Zoster: OR 1.62 (1.22-2.16); p = 0.001
- Pneumococcal: OR 1.29 (1.01-1.66); p = 0.042
Conclusions

- Overall study, prompt was not predictive of vaccination
 - Under per-protocol analysis, vaccination prompt was predictive of vaccination
 - Per protocol analysis could be biased
- Low overall number of vaccination events resulting in underpowered sample
- Low conversion of patients who accepted vaccination prompt
Limitations

- Lower engagement rate; counterbalanced by large sample of patients
- Patients did not complete most messages that are sent
 - Often goes to voice mail or patient does not listen to entire message before hanging up
- Indirect integration into pharmacy workflow
- Patients who accepted vaccine prompt were not vaccinated
 - New program/novel intervention
 - Limited communication between PI and pharmacists
- Possible limited workflow integration or UI challenges
Next Steps

- Additional research is needed
- Develop ways to increase engagement; troubleshoot existing intervention and pharmacist UI utilization
- Test new intervention using additional modalities (such as text and mobile) with higher rates of connecting with patient
- Improve behavioral prompt
 - Create digital genotypes using additional consumer data sources
 - Identify barriers to vaccination (e.g. vaccine hesitancy, cost, etc.)
 - Customize behavioral messages using behavioral economic theory
 - Use rapid throughput A/B test environment with machine learning to refine cluster groups and improve behavioral messages
References

Acknowledgements

- Project sponsorship: Pfizer and Merck
- Project oversight: Pharmacy Quality Alliance
- Project partners: Kinney Drugs, Tops Markets, PriceChopper, Scientific Technologies Corporation and VoicePort
- Faculty advisor: Niteesh K. Choudhry, MD, PhD