Assuring Correctness and Consistency in AFIX-IIS Coverage Implementation

Michael Berry HLN Consulting, LLC

AIRA 2017 IIS National Meeting April 11, 2017

- **AFIX**: Assessment Feedback Incentives eXchange
- Technical Guidance for AFIX-IIS Integration: Instructions for IIS Program staff on implementing AFIX Coverage Assessment report(s) in the IIS
- Rhode Island KIDSNET: Integrated Child Health Information System and IIS operating in Rhode Island since 1997

- Review of AFIX-IIS Coverage Requirements
- Assessing AFIX Coverage in an IIS
- Testing Strategies
- Lessons Learned

Review of AFIX-IIS Coverage Requirements

- Childhood (2 year-olds; as of 24 months)
 - 4 DTaP
 - 3 Polio
 - 1 MMR
 - UTD Hib
 - UTD Hep B
 - 1 VAR
 - UTD PCV
 - UTD RV
 - 1 Flu (previously completed flu season)
 - 2 Hep A
 - 4:3:1:3:3:1:4 Series

- Adolescent (13-17 year-olds; as of today)
 - UTD Hep B
 - 2 MMR
 - 2 VAR
 - 1 Tdap
 - UTD Meningococcal
 - 1 HPV*
 - UTD HPV*
 - 1 Flu (previously completed flu season)
 - 2 Hep A
 - UTD Polio

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos	18 mos	19-23 mos	2-3 yrs
Hepatitis B ^j (HepB)	1st dose	1st dose		3 st dose>							
Rotavirus ² (RV) RV1 (2-dose series); RV5 (3-dose series)			1st dose	2 nd dose	See footnote 2						
Diphtheria, tetanus, & acellular pertussis³ (DTaP: <7 yrs)			1st dose	2 nd dose	3 rd dose			≺ 4 th (dose>		
Haemophilus influenzae type b ⁴ (Hib)			1 st dose	2 nd dose	See footnote 4		<3 rd or ⁴ See foo	th dose,> otnote 4			
Pneumococcal conjugate ^s (PCV13)			1st dose	2 nd dose	3 rd dose		∢ 4 th (dose>			
Inactivated poliovirus ⁶ (IPV: <18 yrs)			1st dose	2 nd dose	← ····································	 	3 rd dose	 	>		As
Influenza ⁷ (IIV)							Ar	nual vaccina	I ation (IIV) 1 o	or 2 doses	Assessment Cohort
Measles, mumps, rubella [§] (MMR)					See foo	otnote 8	∢ 1 st (dose>			men:
Varicella ⁹ (VAR)							≺ 1 st (dose>			t Col
Hepatitis A ¹⁰ (HepA)							∢ 2-	dose series, S	ee footnote	10>	nort
Meningococcal ^{J 1} (Hib-MenCY ≥6 weeks; MenACWY-D≥9 mos; MenACWY-CRM≥2 mos)						See foo	tnote 11				
Tetanus, diphtheria, & acellular pertussis¹² (Tdap: ≥7 yrs)											
Human papillomavirus ¹³ (HPV)											
Meningococcal B ¹¹											
Pneumococcal polysaccharide ⁵ (PPSV23)											

UTD Hep B

UTD RV

4 DTaP

UTD Hib

UTD PCV

3 Polio

1 Influenza (previous season)

1 MMR

1 VAR

2 Hep A

UTD Hep B

UTD RV

4 DTaP

UTD Hib

UTD PCV

3 Polio

1 Influenza (previous season)

MMR

1 VAR

2 Hep A

 $4:3:1:3^{\circ}:3^{\circ}:1:4^{\circ}$

VAR
Hep B
Hib
Polio
Polio

UTD Hep B

UTD Polio

1 Flu (prev. season)

2 MMR

2 VAR

2 Hep A

UTD Mening

1 Tdap

1 HPV, UTD HPV*

Assessing Fixed # of doses – Single Antigens

Immunization Algorithm Output Example: 1 VAR (1 invalid, 1 valid)

- Examples: 3 Polio, 1 Flu, 1 VAR, 2 VAR, 2 Hep A, 1 HPV
- Utilize immunization algorithm evaluation output as of assessment date
- Count number of valid doses in series (i.e., valid doses towards series completion)

Assessing Fixed # of doses – Combination Vaccines

- Examples: 4 DTaP, 1 MMR, 2 MMR, 1 Tdap
- Utilize immunization algorithm output as of assessment date
 - Depending on immunization algorithm functionality/output, may need to utilize evaluations and/or forecasts to ensure all antigens are included

Immunization Algorithm Output Example: 1 measles, 1 mumps does not meet 1 MMR requirement

- "...'UTD' [...] is used in reference to vaccine measurements where a variable number of doses can be applied to achieve protection depending on patient age, date of first dose, and/or vaccine product licensure nuances."
- For example:

Up-To-Date

- UTD for AFIX is applied in accordance with the ACIP routine and/or catch-up schedules
- Appropriate number of doses to be considered compliant with the series
- Applies to both the individual vaccines and the 4:3:1:3:3:1:4 assessment

Which of these are Up-To-Date?

- Series Complete
- Waiting period for next dose
- Minimum age for next dose not yet reached
- Maximum age exceeded

Assessing AFIX UTD

- Examples: UTD Hep B, UTD RV, UTD Hib, UTD PCV, UTD Polio, UTD Mening
- Utilize immunization algorithm forecast output as of assessment date

Immunization Algorithm Output Example: 2 RV (2 Rotarix – 2-dose series)

Assessing AFIX UTD

■ What if child receives 1st dose of PCV at 23 months?

	Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos	18 mos	19-23 mos	
	Pneumococcal conjugate ⁵ (PCV13)			1st dose	2 nd dose	3 rd dose		⋖ 4 th (dose>			UTD PCV
1	(PCV13 series from A	.CIP sch	redule)				!		!			
											1 st dos	se

UTD: Behind but in Waiting Period

- Child only has one dose
- But second dose is not recommended until after 2nd birthday – past the cutoff point for the childhood AFIX assessment

Immunization Algorithm Output Example: 1 PCV at 23 months results in future recommendation

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos	18 mos	19-23 mos
Pneumococcal conjugate ⁵ (PCV13)			1 st dose	2 nd dose	3 rd dose		∢ 4 th (lose>		

UTD PCV

UTD: Behind but in Waiting Period

- Initial guidance for KIDSNET:
 - This example is considered UTD for PCV at 24 month mark
 - UTD does not imply series completion
- Follow-up guidance:
 - AFIX-IIS Integration Guide requires "Series Complete" and remains unchanged

Assessing AFIX UTD

AFIX-IIS Integration Guidance: Use "Series Complete"

Table 13: Business Rules for Determining Patient Status: Childhood Assessment

	Business Rules	Notes
9.	For the following vaccine groups, the IIS should use Patient Series Status Complete from its forecasting/evaluation algorithm to determine if the child has completed the antigen series on or before age 24 months:	Hib PCV Rotavirus Hep B

Table 14: Business Rules for Determining Patient Status: Adolescent Assessment

	Business Rules	Notes
10.A	For the following vaccine groups, the IIS should use Patient Series Status Complete from its forecasting/evaluation algorithm to determine if the adolescent has completed the antigen series on or before the compliance date:	Hep B Meningococcal Hep A Polio HPV

UTD for HPV

Example: 2 doses of HPV on 2-dose schedule; series complete

- 3-dose series: Previous AFIX assessments were 3 HPV, 2 HPV, 1 HPV
- New 2-dose HPV series introduced in Dec. 2016
- AFIX assessments now UTD HPV and 1 HPV
- UTD HPV for AFIX requires series completion

Example: 2 doses of HPV on 3-dose schedule; waiting period for dose 3; not UTD for AFIX

- Meningococcal is the only vaccine group that has a recommendation *inside* the assessment age cohort
- Can adolescent be considered UTD for Meningococcal without the 2nd dose?

Vaccine	11-12 yrs	13-15 yrs	16 yrs	17-18 yrs
Hepatitis B ^j (HepB)				
Rotavirus ² (RV) RV1 (2-dose series); RV5 (3-dose series)				
Diphtheria, tetanus, & acellular pertussis³ (DTaP: <7 yrs)				
Haemophilus influenzae type b⁴ (Hib)				
Pneumococcal conjugate ^s (PCV13)				
Inactivated poliovirus (IPV: <18 yrs)				
Influenza ⁷ (IIV)	Ar	nual vaccina 1 dose o		
Measles, mumps, rubella ^g (MMR)				
Varicella ⁹ (VAR)				
Hepatitis A ¹⁰ (HepA)				
Meningococcal ^{I I} (Hib-MenCY ≥6 weeks; MenACWY-D≥9 mos; MenACWY-CRM≥2 mos)	1st dose		2 nd dose	
Tetanus, diphtheria, & acellular pertussis¹² (Tdap: ≥7 yrs)	Tdap			
Human papillomavirus ¹³ (HPV)	See footnote 13			
Meningococcal B ¹¹		See footr	note 11	
Pneumococcal polysaccharide ⁵ (PPSV23)	ee footnote	5		

UTD for Meningococcal

Immunization Algorithm Output Example: 15 year-old with 1 dose; next dose at 16 years

UTD for Meningococcal

- Initial guidance for KIDSNET:
 - 1 dose sufficient for UTD until past due on dose 2
- Follow-up guidance:
 - UTD requires series completion
 - "For now and until further guidance..."

- Missed Opportunity on the Last Immunization Visit:
 - "On the patient's last visit for an immunization he/she received a dose of a different antigen than the antigen in question, or there was a reason a different antigen was not given, and at the time of that visit a valid dose of the antigen in question could have been administered in keeping with the patient's age and the time interval from the previous valid or invalid dose."

- Utilize immunization algorithm forecast output as of last immunization visit date
- Do not include any of the vaccinations given on that date in the algorithm input
- Compare the algorithm recommendations for that day with the vaccinations that were actually given

Missed Opportunity for "Category B" Recommendation

(Hep A series and series legend from ACIP schedule)

- Hep A for unvaccinated persons 2 years or older is a "Category B" recommendation: Individual clinical decision making
- For adolescents: Hep A is only assessed as a missed opportunity if the person has already received 1 dose – the IIS will forecast for the 2nd dose.
- But some IIS recommend Hep A even for unvaccinated adolescents (not KIDSNET though)

February 29, 2016 – AFIX Leap Baby!

- Children born on this leap day will be in the AFIX Childhood Cohort next year
- Assessment on 2nd birthday:
 - *February 28*, 2018, or
 - *March 1*, 2018?

February 29, 2016 – AFIX Leap Baby!

Date Calculation Rules

When calculating dates there are a few important rules to remember.

Calculation Type	Business Rule ID	Rule	Example
Adding years	CALCDT-1	Adjust only the year not the month and days.	January 1, 2000 + 3 years January 1, 2003
Adding months	CALCDT-2	Adjust only the month, and if necessary the year, but not the day.	January 1, 2000 + 3 months April 1, 2000
Adding weeks or days	CALCDT-3	Convert each week to 7 days, and add the total number of days to the date.	February 1, + 5 weeks (or 35 days) March 8
Assess as of March 1, 2	018	Sometimes these rules can result in a date that does not exist. If this occurs, move to the first day of the following month.	July 31 + 2 months September 31 (October 1)

Like school entrance requirements, AFIX-IIS
 assessments are based on CDSi (Clinical Decision
 Support for Immunization) but add additional business
 logic on top of CDSi

Testing AFIX-IIS

- Challenges include:
 - Forecasts from the past (2nd birthday, last immunization visit)
 - Counting valid doses of combination vaccine
 - UTD for child assessments, HPV, Meningococcal
 - Missed opportunities for category "B" recommendations
 - Seasonal Flu
- Testing of AFIX-IIS coverage and missed opportunity decisions cannot be satisfied by CDSi test cases alone

Manual Testing

- Method 1: Test cases
 - Execute test cases by manually manipulating records in the IIS to trigger a switch in coverage result and monitoring output
 - Pros:
 - No test infrastructure required
 - No detailed test output required
 - Can target specific edge cases
 - Cons:
 - Tedious and time consuming
 - Low test coverage

Manual Testing

- Method 2: Random samples
 - Randomly select children in an AFIX coverage report and manually verify their AFIX coverage status
 - Pros:
 - Test cases not required
 - Cons:
 - AFIX coverage report must output detail at the child level
 - Tedious and time consuming
 - Low test coverage

Automated Regression Testing

- Compare results of large-scale IIS batch runs
- Pros:
 - Full coverage possible
 - Detect regressions
- Cons:
 - Test infrastructure required
 - Can only detect regressions, not pre-existing problems

Automated Testing Using Standard Test Cases

- Execute standard test cases and compare results
- Pros:
 - Potential for high quality, automated testing
 - Detect regressions and pre-existing problems
- Cons:
 - There are no AFIX-IIS standard test cases at this time
 - Test infrastructure required

Compare results of large-scale IIS batch runs against two different AFIX-IIS engines

Pros:

- A good alternative when no standard test cases are available
- A good complement to standard test cases
- High coverage possible
- Detect regressions and pre-existing problems
- Identify potential bugs or anomalies in both AFIX-IIS implementations

Cons:

- Test infrastructure required
- Problems won't be revealed if both sources are wrong

- Deployed open source Immunization Calculation Engine (ICE)
- Wrote AFIX-IIS test harness around ICE
 - Queries IIS for child/adolescent cohorts by practice
 - For each child in cohort:
 - Generates Virtual Medical Record (vMR) and makes ICE call
 - Parses vMR output and applies AFIX-IIS assessment logic
 - Outputs child/adolescent coverage summary and detail for practice

Testing RI KIDSNET's AFIX-IIS against ICE

Testing RI KIDSNET's AFIX-IIS against ICE

- Ran AFIX-IIS test harness
- Compared output with KIDSNET
 - Manually compared coverage numerators
 - Examined detailed output when numerators didn't match
 - Found and fixed issues with Rotavirus and Meningococcal that hadn't been detected using other testing methods

Lessons Learned

- Ensuring correctness and consistency requires:
 - Unambiguous interpretation of the guidelines
 - A high-coverage testing strategy
- Automated testing against an open source engine is feasible and effective

Contact Information

Mike Berry

HLN Consulting, LLC

215-568-3005 (Voice)

858-538-2209 (FAX)

berrym@hln.com

www.hln.com

