

Tool Testing Guidance

The Message Quality Evaluation
(MQE) Tool

September, 2018

Revisions/Change Log

Version Date Approved By Changes/Updates

0.2 03/16/2018 AIRA-MQE Initial version of draft
document

Final 9/30/2018 AIRA Staff Reformatted Document

Table of Contents
Introduction ... 3

Scope of this document ... 3

Issue Tracking and Testing in GitHub ... 3

Issue Management ... 3

Title .. 4

Overview .. 4

Requirements .. 4

Developer Notes .. 5

Testing ... 5

Assignees .. 5

Labels ... 5

Projects .. 5

Milestones ... 5

Comments and Testing .. 6

Core Functionality Test Script.. 6

General Requirements – GitHub and Installation ... 7

MQE Navigation and Dashboard .. 9

MQE Demo Page .. 10

File Input Page.. 11

Site Specific Summary Page ... 14

Individual Message Page .. 16

Closing/Quitting/Restarting .. 19

 3

Introduction
The Message Quality Evaluation (MQE) Tool is an open-source application that is freely
available to members of the IIS community. The tool is designed to assist sites in evaluating
and improving the quality of data coming into their IIS. It will allow users with varying levels of
expertise to quickly and easily generate a series of reports that describe the quality of incoming
immunization data. Individual users are able to take advantage of this stand-alone version of
the MQE. In this implementation, users are able to evaluate messages as part of their ongoing
onboarding activities as well as to augment existing data quality assurance activities in an ad-
hoc fashion. This level of implementation does not interface with existing IIS infrastructure, nor
can it receive data in any way other than manual upload.

The purpose of a testing script is to test existing features for expected functionality, identify
defects, as well as identify enhancements that can be prioritized by the MQE Governance Group.
Through an agile development model, the MQE Technical Team will schedule a sprint to correct
defects and, if possible, implement enhancements identified by testers and prioritized by the
Governance Group prior to the next MQE User Group meeting.

Scope of this document
The scope of this document is twofold. The primary objective is to describe routine testing that
should be completed following any sprint. This will include a description of how issues (i.e.,
bugs and enhancements) are documented, built, and tested. The details of how and what to test
will be captured in GitHub as that is the chosen repository for this application. The second
objective is to provide a detailed script that can be followed to test specific expected
functionality. Because this level of documentation is difficult and resource heavy to maintain, it
is by definition out of scope for Agile development cycles. However, as a tool that is expected to
have longevity and be supported by a dynamic collaborative, having a testing script that can be
reviewed and updated annually is prudent.

Issue Tracking and Testing in GitHub
All issues must be documented thoroughly in GitHub to ensure that they are prioritized and
assigned during upcoming sprints. Issues including future enhancements as well as bugs found
during routine use more specific release testing. The sections below describe how issues and
testing will be handled within GitHub but will not describe in detail the overall governance for
prioritization or development cycles. Instead, that will be described in the forthcoming MQE
Governance Framework document (expected in August 2018).

Issue Management
When a new issue is identified, it must be entered into GitHub with as much detail as possible
so that the developers are able to identify dependencies, assumptions, and constraints for
branching the code base. From there, it must have enough information for the Decision Makers
on the Project Team to be able to prioritize the work so that the Scrum Master can then assign
issues to developers, schedule a Sprint to have the work completed, and identify testers to
confirm that the fixes are in place.

 4

All issues created must include the following sections, although not all will be able to be
completed by the reporter: Title, Overview, Requirements, Developer Notes, and Testing. It is
preferred that the reporter declare whether this is a bug or enhancement, but if that is unknown,
it will be identified prior to assignment. New issues will be reviewed prior to each Project Team
meeting, and work will be prioritized and assigned by the Scrum Master following each meeting.
The screen shot below is an example of an issue reported in GitHub.

Title
The title should be a brief, but explicit description of what this issue is.

Overview
The overview is a more comprehensive description of what the issue is. It may contain the title,
but it should have enough information that a non-technical audience can tell what the reporter
wants the system to do. If it is a bug that is being reported, it should contain details about what
the user was doing when she encountered the bug and whether or not she could reproduce it. If
it is a feature request or enhancement, the overview should describe the need as well as the
rationale. This level of information will be helpful in determining the specific requirements as
well as any constraints in building out the functionality, which in turn will give decision makers
the information they need to be able to prioritize getting the work done.

Requirements
The issue reporter may have some of this information based on their familiarity with the tool,
and if they do, they should provide it. This level of information can help instruct the developer as
he considers where to add the code to make the system meet the need stated in the overview.
For example, if a new report category is requested in the overview, the requirements might
outline how one would get there, whether it should be printable, sortable, etc. The developer will

 5

spend time fleshing out the details to make sure the system can do what the overview is asking
for.

Developer Notes
This section will be completed by the developer as appropriate. There may be implications for
addressing the issue that the user may not be aware of, or that may not be obvious to newer
developers. This is a place to note things to be aware of, dependencies, or prerequisites. If there
are developer notes, this could directly impact the prioritization of issues.

Testing
This is the place where developers can instruct users and testers about confirming that an issue
has been addressed. It should be explicit enough that someone can clearly tell whether the
issue has been resolved satisfactorily. Notes about testing, including pass/fail are not added to
the original issue, but instead should be addressed in comments (see the section below).

Assignees
Typically, an assignee won’t be determined until an issue has been prioritized. This happens
during the pre-Sprint meeting. That said, a particular issue may be of interest to a particular
developer and they are encouraged to assign themselves if that is the case. Most often there
will be a single developer assigned to an issue, though particularly troublesome issues may
have more than one developer assigned.

Labels
Currently, there are several labels to choose from in GitHub. These labels can be modified by
administrators for the repository, but they follow industry standard, so modifying them should
be done with care. The most common labels (bug, enhancement, and question) should be
applied when the issue is first reported. Additional labels may be assigned, either by a reviewer
or developer (for example, someone may report a bug, but upon review the Technical Team may
decide that it is a good first issue for new developers). If an issue is determined to be a
duplicate, invalid, or something that won’t be fixed, the rational needs to be documented in the
comments.

Projects
Projects should be considered major releases. For the purpose of the current JDI scope, the
Project is Initial Release, Summer 2018. A project is a way for the Project Team to have a sense
of what deliverables were met during a particular release cycle. A project will consist of one or
more milestones (described below).

Milestones
For the purposes of this project, a Milestone is essentially a Sprint cycle. Milestones may be
decided in advance, and during the JDI project period, they are expected to happen monthly. A
Sprint is typically a two-week development cycle. During this time, based on recommendations
from the Project Team, the Scrum Master will identify which issues should be addressed to
meet a particular Milestone. Due to the nature of Agile development, any issue assigned during
a Sprint is expected to be completed during that Sprint. Issues that are not sufficiently

 6

addressed during a Sprint may be moved to the next Sprint cycle at the discretion of the Project
Team and Scrum Master.

Comments and Testing
Comments in GitHub should be used liberally. GitHub will automatically assign the date and
person making the comment. Comments will be the primary source of documentation for this
project going forward. If a decision is made not to pursue a particular issue, it should be
documented in the comments. If an issue is not prioritized for a particular project period, the
reason should be provided in the comments. If an issue is unable to be resolved based on
information provided (i.e., the developer runs into an unexpected obstacle), it should be
documented in the comments.

When an issue has been addressed and a tester has been assigned, the outcome of that testing
should be documented in the comments. If there are issues encountered during testing, those
should be documented as well. Finally, if an issue passes testing, but the issue yields different
results than what might have been expected based on the overview and requirements, that too
should be documented in the comments section. Anyone providing comments is encouraged to
use screenshots where appropriate if they aren’t able to articulate the details of the issue they
are reporting.

At the conclusion of each development and successful testing cycle, an updated application file
will be released and the Release Notes page of the GitHub Wiki will be updated.

Core Functionality Test Script
Following any major release (starting with the Initial Release, Summer 2018), the testing script
below should be followed by one or more testers. Each step described should pass, any that
does not should be documented and investigated. If the functionality no longer exists (i.e., it has
been deprecated), this document should be updated to reflect that. If new functionality has been
added since the last document update, those sections that are affected should be updated as
well as any new sections added.

Just as the GitHub Release Notes page will be updated immediately following a development
cycle, any adjustments to core functionality should be updated in the following core test scripts.

 7

General Requirements – GitHub and Installation
Stand-alone MQE users need to be able to access the GitHub repository and download the
application to their workstation. To do this, users must have administrative rights to the
workstation (or server) they are accessing. To run the application, users must have the latest
version of Java installed and must have a modern internet browser. Although the tool is
designed to be used on data relevant to the user’s jurisdiction, a selection of test files has been
made available for testing.

 Steps Expected Results Pass/Fail Defects/Comments

1.1 Navigate to the MQE
repository on GitHub
(https://github.com/immre
gistries/mqe)

The MQE Repository is
displayed and a link to
the wiki is displayed

1.2 Navigate to the wiki by
clicking the link and review
the home page information

Material is easy to read
and understand

1.3 Click the installation link on
the right side of the page

Instructions for
installation are displayed
and hyperlinks are active

1.4 Review and follow
installation instructions

Material is easy to read
and understand

1.5 Install Java using the link
provided (if Java is already
installed, confirm that you
are running version 1.7 or
higher)

Java installs

1.6 Click the link to download
MQE

Zip package downloads

1.7 Unzip the MQE package Package unzips and
contents are exposed:
start.command, start.bat,
mqe-message-hub-
2.0.3.war,
mqe_message_hub
_db.mv.db, MQA
Demo.url

1.8 Launch the application by
double clicking on the
start.bat file

A command window
opens and displays

https://github.com/immregistries/mqe
https://github.com/immregistries/mqe

 8

 Steps Expected Results Pass/Fail Defects/Comments

“Spring”; code continues
to run.

1.9 (Wait 1 minute after 1.8)

Double click MQE Demo.url
to launch the browser

The dashboard opens in
to display: MQE Menu.
The url is
localhost:8756/mqe/#/
messages

 9

MQE Navigation and Dashboard
The dashboard is the main page that the user will land on whenever they launch the application.
This is also the page that contains most of the information the user will interact with. MQE
users need to be able to navigate to a variety of screens to utilize the tool. These screens
should be accessible by menu as well as identified in the URL. Functionality should be
consistent, quick, and reliably. The user should be to return to the main Dashboard page from
anywhere in the application.

 Steps Expected Results Pass/Fail Defects/Comments

2.1 Review the Dashboard
(landing) page

The landing page should
display a menu and a
search option to enter Site
information by Pin or
Name

2.2 Click MQE Menu in the
header to reveal a
dropdown menu of current
options

The following menu
options should be
available: Dashboard, File
Input, and MQE Demo

2.3 Select MQE Demo from
the menu

Navigate to MQE Demo
page which displays VXU
Input and a Submit an
Example button are visible

2.4 Select Dashboard from the
menu

Return to the landing page

2.5 Select File Input from the
menu

Navigate to the File Input
page which displays File
Upload and a Browse and
Submit button are visible

2.6 Select Dashboard from the
menu

Return to the landing page

2.7 Select Dashboard from the
menu

Return to the landing page

 10

MQE Demo Page
An MQE user may want to test a single message given by a provider during onboarding, or if the
submitter plans to modify a currently existing feed. While there are structural validation tools
available (NIST), this application can be used as well to generate a report which is easy to read
an if needed screen shot and shared with the provider. The MQE has a built-in sample file for
testing this functionality, but any single message can be pasted in for review.

 Steps Expected Results Pass/Fail Defects/ Comments

3.1 Navigate to the MQE Demo
Page

Navigate to MQE Demo
page which displays VXU
Input and a Submit an
Example button are visible

3.2 Click the “Example” button A test message should load
into the window

3.3 Click the “Submit” button A “Message ACK” section is
generated, followed by an
“MQE Evaluation” section
that displays errors,
warnings, and information
about the submitted
message

3.4 (Optional)

Locate a message from
your system that you can
copy and paste into the
application

The entire message you
copied is pasted into the
window

3.5 (Optional)

Click the “Submit” button

A “Message ACK” section is
generated, followed by an
“MQE Evaluation” section
that displays errors,
warnings, and information
about the submitted
message

3.6 Select Dashboard from the
menu

Return to the landing page

 11

File Input Page
The stand-alone application allows users to load single files, batched files, or zip files
containing multiple messages to the interface. The resulting message evaluation data is stored
in an internal database that the user has access to whenever the application is running. [Note:
sample files are available for download at
https://github.com/immregistries/mqe/tree/master/examples.]

 Steps Expected Results Pass/Fail Defects/ Comments

4.1 Navigate to the File Input
page

Navigate to the File Input
page which displays File
Upload and a Browse and
Submit button are visible

4.1 Click the “Browse” button to
identify a single message to
upload

A File Upload window
opens and you can select a
file

4.2 After selecting the file from
the File Upload window, click
ok

The Submit button is active
and the file you selected is
displayed next to the
Browse button

4.3 Click the Submit button A progress bar displays the
progress of the upload;
once complete an “Acks”
button is displayed to the
right of the progress bar
and a trash can is displayed
to the right of that.

4.4 Click the download Acks
button

A file containing ACK
messages for the uploaded
file is downloaded to a
default download directory.

4.5 Click the trash button The progress bar and Ack is
discarded

4.6 Navigate back to the
Dashboard

A Heat Map is displayed
that shows a calendar of
recent activity and a cell
representing the message
date is highlighted in Green
(this represents the file you
just uploaded)

 12

 Steps Expected Results Pass/Fail Defects/ Comments

4.7 Navigate back to the File
Input page

Navigate to the File Input
page which displays File
Upload and a Browse and
Submit button are visible

4.8 Click the “Browse” button to
identify a batch of messages
(single file) to upload

A File Upload window
opens and you can select a
file

4.9 After selecting the file from
the File Upload window, click
ok

The Submit button is active
and the file you selected is
displayed next to the
Browse button

4.10 Click the Submit button A progress bar displays the
progress of the upload;
once complete a Download
Ack button is displayed

4.11 Click navigate back to the
Dashboard [Note: you may
navigate away from this page
prior to the upload reaching
100%. As you navigate back
and forth the % complete bar
should progress and the heat
map should update]

A Heat Map is displayed
that shows a calendar of
recent activity and cells
representing message
dates are highlighted in
Green; variations in color
represent numbers of
messages by day – lighter
colors indicate fewer
messages

4.12 Navigate back to the File
Input page

Navigate to the File Input
page which displays File
Upload and a Browse and
Submit button are visible

4.13 Click the “Browse” button to
identify a zipped file
containing multiple
messages to upload

A File Upload window
opens and you can select a
file

4.14 After selecting the file from
the File Upload window, click
ok

The Submit button is active
and the file you selected is
displayed next to the
Browse button

 13

 Steps Expected Results Pass/Fail Defects/ Comments

4.15 Click the Submit button A progress bar displays the
progress of the upload;
once complete a Download
Ack button is displayed

4.16 Click navigate back to the
Dashboard [Note: you may
navigate away from this page
prior to the upload reaching
100%. As you navigate back
and forth the % complete bar
should progress and the heat
map should update]

A Heat Map is displayed
that shows a calendar of
recent activity and cells
representing message
dates are highlighted in
Green; variations in color
represent numbers of
messages by day – lighter
colors indicate fewer
messages

4.17 Navigate back to the File
Input page

Navigate to the File Input
page which displays File
Upload and a Browse and
Submit button are visible

4.18 Navigate back to the
Dashboard

User is back on the main
page

 14

Site Specific Summary Page
When users click on a date in the heatmap they are taken to a summary page for that site’s
messages. From there they can change the summary information on the page by navigating
through dates or drill down for more information about particular messages that were
submitted on that day.

 Steps Expected Results Pass/Fail Defects/Comments

5.1 From the Dashboard,
click into the Site box

A list of sites represented by
the files that were submitted
displays in the dropdown list.
(If using one of the sample
files provided, the dropdown
list should display MQE
Unspecified.)

5.2 If there is more than
site in the dropdown
list, select MQE
Unspecified from the
list

The heat map changes to
reflect only messages
submitted by this facility

5.3 Click on one of the
green colored squares
in the heat map

The date of the selection is
displayed in the upper right
above the heat map. On either
side of the date is an arrow
indicating moving forward or
back on the calendar.

Below the heat map, 5
hyperlinks (tabs) are displayed:
Messages, Errors/Warnings,
Codes, Vaccines, Reports

By default, the active tab is the
Messages tab which displays
a list of messages for that day
is displayed. Message Control
IDs are displayed as hyperlinks

Above the Provider name there
is a hyperlink that indicates
back to Select Provider

5.4 Click on the
Errors/Warnings tab

The tab focus changes to the
Errors/Warning tab and if there
are any errors or warnings,
they are displayed

 15

 Steps Expected Results Pass/Fail Defects/Comments

5.5 Click on Codes Tab The tab focus changes to the
Codes tab and a sample report
is displayed

*This will be function in
the initial release and
display an actual report of
codes received for
messages processed on
that day.

5.6 Click on the Vaccines
tab

The tab focus changes to the
Vaccine tab and a sample
report is displayed

*This will be function in
the initial release and
display an actual report of
administered in messages
processed on that day.

5.7 Click on the Report tab The tab focus changes to the
Report tab and provides a
summary of completeness for
messages received on that day

5.8 Click on the Messages
tab

The tab focus changes to the
Messages tab and the list of
Message IDs is again
displayed as hyperlinks

5.9 Click Return to List (in
the upper left corner
of this screen)

Returns to the Dashboard

5.10 Click on the arrow to
the left of the date

The date changes and the
message list changes to
reflect the new date

5.11 Click on the arrow to
the right of the date

The date changes and the
message list changes to
reflect the new date

5.12 Click the “Select
Provider” link in the
upper left corner

Navigate back to the
dashboard with no heat map
visible

5.13 Navigate back to the
Dashboard

User is back on the main page

 16

Individual Message Page
There are a number of reasons a user may want to dig into the details of any individual
message. This provides access to both the original message as well as the ACK, and allows the
user to search for specific issues within the message as well as clearly identifies issues within
the message.

 Steps Expected Results Pass/Fail Defects/ Comments

6.1 Click into the Site box A list of sites represented by the
files that were submitted
displays in the dropdown list.

6.2 If there is more than
site in the dropdown
list, select MQE
Unspecified from the
list

The heat map changes to reflect
only messages submitted by this
facility

6.3 Click on one of the
green colored squares
in the heat map

Below the summary, a list of
messages for that day is
displayed. The Message Control
ID is displayed as a hyperlink

6.4 Click on one of the
Message Control IDs

Navigate to the message screen
that displays a summary of the
message.

Below the summary is a list of
issues detected.

Below detected issues, the Ack
is displayed.

Below the Ack, evaluated
message is displayed.

Below the message, the user has
the ability to search the
message content.

Lastly, the message is parsed by
segment (including location,
description, etc.)

6.6 Review the message
information section

Sender, Received Date, Patient
Name, CVX List, Control ID, and
Ack Status are displayed

6.7 Review the Errors
section

Errors, Warning, and Issues (if
any) are displayed and can be

 17

 Steps Expected Results Pass/Fail Defects/ Comments

filtered by clicking on any of the
tab headers

6.8 Review the Response
(ACK)

Any issues, errors, or warnings
detected should be displayed in
the ACK

6.9 Review the Message
Received

The full original message is
displayed

6.10 Review the parsed
message

A table with relevant details from
the message including the
segment, value, location,
repetition, and description is
displayed

6.11 Click each of the
segment buttons to
the left of the table

The table is filtered to only
display relevant information
from that segment (e.g., when
you click MSH, only fields from
MSH appear in the table). The
selected segment button is
indented

6.12 Return to the table to
the full list by clicking
the indented segment
button

The full table is displayed

6.13 Filter the table for a
specific piece of
information like the
provider’s name
(which can be found in
original message; e.g.,
“Kinnear”)

As you type, the table should
dynamically filter until the piece
of information you search on is
displayed

6.14 Filter the table by
searching for a term
like “name”

As you type, the table should
dynamically filter until elements
that meet your criterion are
displayed (e.g., if you search for
name you should see
NamespaceID as well as Patient
Name, Name of Coding System,
etc.)

 18

 Steps Expected Results Pass/Fail Defects/ Comments

6.15 Filter the table by
searching for a
particular data
element (e.g., RXA-5)

As you type, the table should
dynamically filter until the field
you select is displayed (e.g., as
you type RXA, the table is limited
to RXA segments, if you
continue to type RXA-5, the table
should continue to filter to show
the fields that meet that criteria,
if you continue typing RXA-5-2,
the table should filter to that
component)

6.16 Navigate back to the
Dashboard

User is back on the main page

 19

Closing/Quitting/Restarting
The application will continue to be available through a browser as long as it is running in the
background. Data processed through the MQE will be available via browser indefinitely provided
the application is running and there is adequate storage. In stand-alone implementations, users
will likely only need this application in an ad-hoc fashion. These steps will ensure that users
have access to the application and the data following a reboot, etc.

 Steps Expected Results Pass/Fail Defects/Comments

7.1 Close the active browser The application
window (cmd.exe)
continues to run in
the background, but
the interface is no
longer available

7.2 Locate and double click the MQE
Demo.url

Application
launches and user
lands on the
Dashboard page
where they can
enter the Site or PIN

7.3 Repeat any steps from section 2
through 8 above

Results should
mirror findings from
above

7.4 Close the active browser The application
window (cmd.exe)
continues to run in
the background, but
the interface is no
longer available

7.5 Launch any web-browser and
type in the following URL:
localhost:8756/mqe/#/messages

Application
launches and user
lands on the
Dashboard page
where they can
enter the Site or PIN

7.6 Repeat any steps from section 2
through 8 above

Results should
mirror findings from
above

7.7 Close the Command window Cmd.exe closes

 20

 Steps Expected Results Pass/Fail Defects/Comments

7.8 Repeat any steps from section 2
through 8 above

Navigation steps
work as expected,
but no data are
available, no file
uploads, etc. work

7.9 Restart the application (see step
1.8)

A command
window opens and
displays “Spring”;
code continues to
run.

7.10 Relaunch the interface (see step
1.9)

The dashboard
opens in to display:
MQE Menu

	Introduction
	Scope of this document

	Issue Tracking and Testing in GitHub
	Issue Management
	Title
	Overview
	Requirements
	Developer Notes
	Testing
	Assignees
	Labels
	Projects
	Milestones

	Comments and Testing

	Core Functionality Test Script
	General Requirements – GitHub and Installation
	MQE Navigation and Dashboard
	MQE Demo Page
	File Input Page
	Site Specific Summary Page
	Individual Message Page
	Closing/Quitting/Restarting

