Mixed-Denominator Rates: A Simple Assessment Method for Adult IIS Data

Steve Robison
Oregon Immunization Program

Overview

IIS are increasingly expected to assess immunization rates, including adult rates.

Using flu as an example, a rate estimation method is presented here that is simple to use in IIS data for any age group.

'Mixed-denominator (MD) method'

- focuses on generating denominators to match to IIS numerators
- produces comparable rates across different ages and regions
 - even when underlying data capture and accuracy varies
- can generate estimates of how well populations are captured or represented in the IIS

IIS Rate Assessment Challenges

- Many IIS have adopted an all-age perspective.
 - ALERT IIS moved to lifespan in 2009
- Most (or all?) IIS have better child than adult data capture.
- Teen & adult data can have complicated capture issues
- Compounding capture issues, typically IIS have:
 - Variable capture across demographic and geographic strata/areas.
 - Variable actual immunization rates across strata, that can covary with capture.

So What is an Immunization Rate?

Rate = numerator / denominator

- Typically we pull a numerator from the IIS, then use a measure of population (as Census) for a denominator.
- Problems with this approach:
 - IIS numerators and Census population denominators have different biases.
 - Incomplete and variable population capture means that IIS numerators are drawn from a different, typically lessor, population, than Census.
 - Usually rates for recent immunizations as flu will be substantially biased downward.
- Some IIS have also used both IIS numerators and IIS denominators for rates
 - While this can equalized biases, it over-weights for populations that are well-reported to the IIS, and ignores those that are likely less-well immunized.
 - This approach will typically produce a substantially upward-biased rate.

Rates- Change of Numerator Perspective

Usual process for immunization rate determination:

- Typically we pick a denominator, then try to work with adjusting numerator to match.
- What if instead, we picked multiple, plausible denominators?
 - Recent IIS reported population (such as last 4 or 5 years)
 - External Census or American Community Survey (ACS)

Graphic Representation of IIS vs Census Denominator Usage

IIS vs Census is really about the rate among non-IIS captured populations

- Census denominator assume "unobserved" rate =0
- IIS denominator assume "unobserved" rate = IIS average

Mixed Denominator Assumptions

- Generally practices that don't participate in IIS have less of a focus on immunizations and lower immunization rates.
- IIS unobserved populations usually have lower rates than IIS observed populations
- The IIS-denominator based rate is an upper bound to range of plausible, true immunization rates in the whole population
- The Census-denominator based rate is a lower bound to the range of plausible, true rates.
- A rate based on a combination of the two denominators is more accurate than either one alone.

Mixed Denominator Method

- Mixed Denominator (MD) rate: MD = [x*A + (1-x)*B]; :
 - Were x is a weighting parameter (in case you do have extra information- here it is set to ½ initially)
 - A is an IIS denominator, and B is an Census-ACS denominator
- Not 'truth and beauty' but is useful for less-than-perfect IIS (which is everyone)
- Advantages of the Mixed-Denominator method:
 - As IIS capture increases, the two denominators become closer,
 - MD rates estimates are likely closer to true rates than either IIS or Census based rates alone,
 - Allows for fairer comparisons across age groups or geographic areas with different data capture and completeness.

Oregon ALERT IIS Flu Immunization Reporting

ALERT IIS

 1.6 million flu immunization records for Oregon residents in 2018/19

- This level of reporting has been consistent for the last five flu seasons;
- We have previously estimated ALERT IIS is getting ~3/4ths of all Oregon flu shots.
- Data capture may vary across counties and age groups;
- Rates are highest for young children and seniors;
- Rates are also higher in northern Oregon counties than southern.

Oregon 2018-19 Mixed Denominator Influenza Immunization Rates by Age Groups

Oregon 2018-19 Influenza Immunization Rate Estimates by Age with High-Low Range for Mixed-Denominator Approach

Oregon Adult 18-64 Influenza Immunization Rates by Gender, 2018-19 Season

2018-19 Influenza Immunization Rates by County

Oregon 2018-19 Influenza Immunization Rates by County, All-Ages. (High/Low/Mixed Rates)

Evaluating IIS Completeness/Population Representation

- "Completeness' is a multi-dimensional concept for IIS data.
- A completeness-type measure, for population representation, can be calculated from the MD method.
- This method is based on calculating how much the IIS denominator would have to change for the IIS rate to match the MD rate.
- Overall, ALERT IIS population completeness for flu by MD here is 76%.
- However population completeness varies substantially by age:
 - 6mo to 17 years: completeness = 83%
 - 18 to 64 years: completeness = 69%
 - 65+years: completeness = 94%

Oregon 2018-19 ALERT IIS Influenza Immunization Population Completeness, Mixed-Denominator Calculation

Unobserved Population Immunization Rates

- It is also possible to estimate the immunization rate among the population that is not being captured (unobserved) in the IIS.
- This is based on calculating what underlying rate, for the Census –
 IIS population (unobserved) is consistent with the estimated MD rate.

County 2018-19 Influenza Immunization MD Rate Vs Unobserved Population Rate

Evaluation of MD Rates for Teen Populations

- Practically there are no whole-population rates to compare to MD rates
- One option is to use Oregon's ogive-weighted teen influenza rates for comparison
- Ogive weighting provides a good translation of IIS populations to external (school or Census) populations.

Teen Age 13-17 Influenza Immunization Rate Estimates by Oregon County in 2018-19, (Pair-Matched Ogive and Mixed-Denominator Estimates)

Caveats

The following are a few items that can bias MD rates (and other rates as well)

- Lag in Census capture of population changes.
- High levels of mobility.
- Large amounts of duplicate immunization reports.
- Mortality can bias senior rates.

Other concerns:

- Denominator from flu-only- adding other immunizations may increase accuracy.
- Designed for recent immunizations- further development needed for longer periods.
- Not appropriate for clinic evaluation- only for populations with external (Census) data.

