

Addressing the Evolving COVID-19 Landscape To Registry Function

HL7 Message Processing

Meet the Presenters

Michael Powell

Chief Immunization Applications
Services Unit

California Department of Public Health

Chuck Czajkowski
Chief Technology Officer
M Corp

Gary Wheeler

IIS Portfolio Executive and Strategist

Gainwell Technology

Pre-COVID-19 Landscape

Configurations, Message Counts and Planning

Like all of you, the California Department of Public Health took a hard look at their **infrastructure and capacity** in the run up to the release of the COVID-19 Vaccines.

Pre-COVID, CAIR2 was a solid footing based on the current conditions but soon would be tested by the change in immunization landscape and the expanded role of HL7 messaging.

Problem Statement: A Crack in the Armor

What change in with the COVID-19 Vaccine Rollout

The CAIR2 Team anticipated many of the potential COVID-19 impacts to IIS operations but some impacts were under estimated and others were unforeseen.

Volumes increased - both doses entered and patients

Timing and throughput was critical-

CDC requirements, State data needs, Stakeholder such as contract tracers

Population-based queries more common - shots not always owned by the provider

Different cohort - adult participating in registry for the first time represented larger proportion of transactions

Many new providers to the registry -lots of users going through learning curve

Trial, Error and Breakthrough

Initial Hypotheses – What's Failed / What Changed the Approach

1. Initial Hypotheses

2. Telemetry and War Rooms

3. Solutions

CAIR 2 Environment

- Ecosystem, Network Separate Applications (e.g., Rhapsody, myCAvax, etc.)
- Servers, Space/Capacity
- Operating System
- · Database Tuning

Application Behavior

- Recent Releases
- Change Management Review

Working Hard But Somewhat Blind

- The Team worked diligently to find the $quick\ fix$
- Became clear that the issue deeper than a quick fix could resolve
- · Difficult getting visibility into the different moving parts

The CAIR2 Team performance tested the expanded solution architecture but the testing did not model the eventual real-world use patterns that eventually challenged our ability to process messages at the increased rates.

Trial, Error and Breakthrough

Telemetry and War Rooms – Slowing Down to Go Fast

1. Initial Hypotheses

2. Telemetry and War Rooms

3. Solutions

Telemetry

- Gain performance metrics
- Isolation
 - Internal Processes, RunMatch, DB queries
- Latency

War Room

- Build Cross-functional Team
- Establish Dedicated Conference Call Meeting Room
- Management Support and Governance
- Room to brainstorm, plan, execute, measure and analyze solutions

Scientific Method (Go Old School)

- Narrowing the focus
- Evaluate Feasibility of each option
- Utilize every available subject matter experts (including internal and external)
- Engaged Oracle strike team and Rhapsody experts

Once we had the metrics we needed, we brainstormed without judgment, became hyper-focus on each option, measured and validated the measurements. We even ended up finding improvement though dumb luck.

Trial, Error and Breakthrough

Solutions – The Eagle Has Landed

1. Initial Hypotheses

2. Telemetry and War Rooms

3. Solutions

Trial and Error

- Code and Load
 - Application, RunMatch, Java version, Database efficiency
- Network / Infrastructure / Rhapsody

Part and Pieces

- Infrastructure Changes
 - Mirror Environment, Production-Sized DB, True Situational Testing / Load
- Telemetry Alerts

Solution and Results

- Success!
 - Stubbed out portions of the application to isolate the culprit
 - Don't miss an opportunity to learn from dumb luck
- Issue: A resource shared by VXU and QBP message processing was locking at high message volumes
- **Solution**: Create separate resource for each so message types did not interfere with each other
- **Result**: Ability to process over 3 million message a day with less than 1 second average latency

Lesson's Learned

These lessons are valuable during the pandemic but also apply to any complex technical issue

1. Communication is Key

- Leadership
 - (CA Dept. of Technology, Governor's Office)
- Support Vendors
 - Strike team and management)
- System Stakeholders

Ability to work with you vs. against

3. Go Slow to Go Fast

- Invest time in isolating the problem(s)
- Ensure quality
- Understand multiple cycles may be needed
- Not always a quick fix

5. Incident Response

- One-point person to manage all parties
- Centralize communications and activities.
- Strong leadership and facilitation
- Level of independence and power to direct front-line collaborators
- Technical familiarity w/ environment

2. Utilize Everyone

- Utilize your resources
- Be willing to think differently

4. Avoid the Blame Game

- Collaboration is key
- CA has strong collaboration between: CDPH-ITSD, Gainwell, Oracle, Rhapsody (Lyniate), CA Development of Technology

Summary

Key Takeaways from overcoming this challenge

• Have the tools/data necessary, to tell you what is going on at a detailed level across your ecosystem. You can't address what you don't know.

• Need to represent your system's volume and load to have confidence in promoting all changes to your ecosystem.